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’ INTRODUCTION

Planning and dimensioning of pipelines for the transport of
CO2 in carbon capture and storage (CCS) applications require
highly accurate thermodynamic property models for pure carbon
dioxide as well as for CO2-richmixtures with impurities (e.g., N2).
Since scenarios with sharp expansion are conceivable, phase
equilibria involving solid and liquid as well as solid and gas may
occur. Simple correlation equations for the sublimation pressures
and themelting pressures as a function of temperature can be very
accurate but do not allow for flash calculations. For this reason a
fundamental equation of state for dry ice based on the Gibbs
free energy was established, following a general approach
described by Tillner-Roth.1 Functions for the isobaric heat
capacity along an isobar and the temperature and pressure
dependence of the molar volume (thermal equation of state)
are required, which upon integration yield the Gibbs free
energy of solid carbon dioxide.

’EQUATION OF STATE

The Gibbs free energy may be written as:

gðp,TÞ ¼ h0 � Ts0 þ
Z T

T0

cpðT, p0Þ dT � T
Z T

T0

cpðT, p0Þ
T

dT

þ
Z p

p0
vðp,TÞ dp ð1Þ

In this equation, cp(T, p0) is the isobaric heat capacity along an
isobar p0, v(T, p) is a thermal equation of state explicit in the
molar volume, and h0 and s0 are integration constants. Hence a
model for the isobaric heat capacity at p0 and a thermal equation
of state for dry ice are needed to integrate eq 1. Some simplifying

assumptions have to be made since only few experimental data
are available for solid carbon dioxide and experimental data in the
pressure range from 0 MPa to the triple point pressure ptr were
mostly measured along the sublimation curve:
1 The pressure dependence of cp(T, p) is negligible for 0 MPa
< p < ptr.

2 The pressure dependence of the thermal expansion coeffi-
cient α(T, p) is negligible for 0 MPa < p < ptr.

3 The pressure dependence of the compressibility k(T, p) is
negligible for 0 MPa < p < ptr.

The impact of these assumptions will be analyzed in the
discussion. For the heat capacity a functional form proposed by
Feistel and Wagner2 was used and slightly modified:

cpðT, p0Þ ¼ aT5 þ bT3

T4 þ cT2 þ d
ð2Þ

By a nonlinear least-squares fit (which was chosen for all fitting
done in this work) the constants a, b, c, and dwere fitted to data of
Giauque and Egan.3 As also pointed out by Manzhelii et al.,4 the
experimental data by Giauque and Egan3 are considered themost
accurate experimental data for the heat capacity of dry ice over a
wide temperature range.

The required thermal equation of state is split into two parts.
An equation for the expansion coefficient along an isobar and an
equation for the first derivative of the molar volume with respect
to pressure as a function of temperature and pressure are needed.
Once these two functions are given, the molar volume may be
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obtained by integration of the total differential:

v� v0 ¼
Z v

v0
dv ¼

Z T

T0

∂v
∂T

ðT, p0Þ dT þ
Z p

p0

∂v
∂p

ðT, pÞ dp

ð3Þ
The functional form for the expansion coefficient is chosen to be
the same as for the heat capacity:

αðT, p0Þ ¼ α1T5 þ α2T3

T4 þ α3T2 þ α4
¼ 1

v
∂v
∂T

ð4Þ

The constants α1, α2, α3, and α4 have been fitted to data of
Manzhelii et al.4 For convenience we write the integral of α as

fαðTÞ ¼
Z T

T0

αðT, p0Þ dT ð5Þ

For the partial derivative of the molar volume with respect to
pressure consider the following form:

∂v
∂p

¼ � A
n
ðAp þ BÞ�ðn þ 1Þ=nðK1T

2 þ K2T þ K3Þ ð6Þ

The first pressure-dependent part ensures that the compressi-
bility decreases with an increase of pressure, and the tempera-
ture-dependent part ensures that the compressibility increases
with an increase of temperature. For convenience the tempera-
ture-dependent part will further be referred to as

KðTÞ ¼ K1T
2 þ K2T þ K3 ð7Þ

The constants A, B, n, K1, K2, and K3 were fitted to isothermal
compressibility data of Manzhelii et al.4 and to data for the
pressure dependence of the molar volume of Olinger5 and Liu6 at
a temperature of about 296 K.

Combining eqs 2 to 6 with eq 1 and reducing the resulting
equation by the reference temperature T0 and the universal gas
constant R = 8.314472 J 3mol�1

3K
�1 leads to the Gibbs free

energy for dry ice in the following form:
g

RT0
¼ g0 þ g1Δϑ þ g2Δϑ

2

þ g3 ln
ϑ2 þ g24
1 þ g24

 !
� 2ϑ

g4
arctan

ϑ

g4

 !
� arctan

1
g4

 !" #( )

þ g5 ln
ϑ2 þ g26
1 þ g26

 !
� 2ϑ

g6
arctan

ϑ

g6

 !
� arctan

1
g6

 !" #( )

þ g7Δπ½efαðϑÞ þ KðϑÞg8� þ g9KðϑÞ½ðπ þ g10Þðn � 1Þ=n

� ð1 þ g10Þðn � 1Þ=n� ð8Þ
The temperature T and the pressure p are replaced by the
reduced temperature ϑ and the reduced pressure π. It is:

ϑ ¼ T
T0
, Δϑ ¼ ϑ� 1, π ¼ p

p0
, Δπ ¼ π� 1

ð9Þ
The reference state has been set to

T0 ¼ 150 K, p0 ¼ 101325 Pa,

v0 ¼ 2:7186286 3 10
�5 m3

3mol�1 ð10Þ
The coefficients g2 to g6 result from the integration of cp, and

the coefficients g7 to g10 result from the integration of the thermal

equation of state. g0 and g1 are integration constants and may be
used to link eq 8 to the equation of state for the fluid phase.
Hence g0 and g1 may be calculated according to the following
relations:

gsolðTtr, ptrÞ ¼ gvapðTtr, ptrÞ ¼ g liqðTtr, ptrÞ ð19Þ

ssolðTtr, ptrÞ ¼ sliqðTtr, ptrÞ �Δhmelt

Ttr
ð20Þ

Δhmelt is the melting enthalpy at the triple point, and s is the
molar entropy of the indicated phase. The melting enthalpy was
measured by Kuehnen and Robson7 and Maass and Barnes8 and
may be found in the Gas Encyclopædia of Air Liquide.9 The value
used in this work was treated as an adjustable parameter and has
been set to Δhmelt = 8875 J 3mol�1. According to Span and
Wagner10 the temperature and pressure at the triple point is set
to Ttr = 216.592 K and ptr = 517950 Pa.

Table 1. Values for the Parameters of Equation 8

g0 = �2.6385478 3 10
0 g0

α = 3.9993365 3 10
�2

g1 = 4.5088732 3 10
0 g1

α = 2.3945101 3 10
�3

g2 = �2.0109135 3 10
0 g2

α = 3.2839467 3 10
�1

g3 = �2.7976237 3 10
0 g3

α = 5.7918471 3 10
�2

g4 = 2.6427834 3 10
�1 g4

α = 2.3945101 3 10
�3

g5 = 3.8259935 3 10
0 g5

α = �2.6531689 3 10
�3

g6 = 3.1711996 3 10
�1 g6

α = 1.6419734 3 10
�1

g7 = 2.2087195 3 10
�3 g7

α = 1.7594802 3 10
�1

g8 = �1.1289668 3 10
0 g8

α = 2.6531689 3 10
�3

g9 = 9.2923982 3 10
�3 g0

k = 2.2690751 3 10
�1

g10 = 3.3914617 3 10
3 g1

k = �7.5019750 3 10
�2

n = 7 g2
k = 2.6442913 3 10

�1

Table 2. Relation of Thermodynamic Properties to Equation
8 and Its Partial Derivatives

thermodynamic property relation to g

volume v ¼ ∂g
∂p

ð11Þ

entropy s ¼ � ∂g
∂T

ð12Þ

enthalpy h ¼ g � T
∂g
∂T

ð13Þ

internal energy u ¼ g � T
∂g
∂T

� p
∂g
∂p

ð14Þ

Helmholtz energy f ¼ g � p
∂g
∂p

ð15Þ

isochoric heat capacity
cp ¼ � T

∂
2g

∂T2
ð16Þ

cubic expansion coefficient
α ¼ ∂

2g
∂T∂p

 !
=

∂g
∂p

 !
ð17Þ

isothermal compressibility
k ¼ � ∂

2g
∂p2

 !
=

∂g
∂p

 !
ð18Þ
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Finally combining eqs 4, 5, and 10 yields:

fαðϑÞ ¼ gα0 ðϑ2 � 1Þ þ gα1 ln
ϑ2 � gα2 ϑ þ gα3
1� gα2 þ gα3

 !

þ gα4 ln
ϑ2 þ gα2 ϑ þ gα3
1 þ gα2 þ gα3

 !
þ gα5 arctan

ϑ� gα6
gα7

 !"

� arctan
1� gα6
gα7

 !#
þ gα8 arctan

ϑ þ gα6
gα7

 !"

� arctan
1 þ gα6

gα7

 !#
ð21Þ

Replacing the temperature in eq 7 by the reduced temperature
leads to:

KðϑÞ ¼ gk0ϑ
2 þ gk1ϑ þ gk2 ð22Þ

Values for all constants of eq 8, 21, and 22 are listed in Table 1. g0
and g1 have been chosen such that the equation for dry ice has the

same reference point as the reference equation for CO2 in the
fluid phase by Span and Wagner.10

’RESULTS AND DISCUSSION

To analyze the behavior of eq 8 we examined the deviations
between the measured thermodynamic properties and the prop-
erties calculated using the new fundamental equation of state. All
thermodynamic properties of a substance can be calculated from
a fundamental equation and its derivatives with respect to the
independent variables on which the equation depends. Table 2
gives a brief overview of the partial derivatives used to calculate
thermodynamic properties from eq 8. The respectively needed
derivatives are given in Table 3. The derivatives of K and fα are
given in Table 4. Numerical values at different temperatures and
pressures are provided in Table 5.

In Figure 1 the relative deviation of calculated heat capacity
data from experimental values is plotted over temperature. All
of the data were measured along the sublimation curve, so the
corresponding pressure to each temperature is the respective

Table 3. Partial Derivatives of Equation 8 with Respect to Temperature and Pressure

equations for the derivatives of the Gibbs energy

∂g
∂T

¼ R g1 þ g22Δϑ� 2g3
g4

arctan
ϑ

g4

 !
� arctan

1
g4

 !" #
� 2g5

g6
arctan

ϑ

g6

 !
� arctan

1
g6

 !" #(

þ g7Δπ expðfαðϑÞÞ∂fαðϑÞ
∂ϑ

þ g8
∂KðϑÞ
∂ϑ

� �
þ g9

∂KðϑÞ
∂ϑ

½ðπ þ g10Þðn � 1Þ=n � ð1 þ g10Þðn � 1Þ=n�
�

∂g
∂p

¼ RT0

p0
g7½expðf αðϑÞÞ þ g8KðϑÞ� þ g9KðϑÞn� 1

n
ðπ þ g10Þ � 1=n

� �

∂
2g

∂T∂p
¼ R

p0
g7 expðf αðϑÞÞ∂f

αðϑÞ
∂ϑ

þ g8
∂KðϑÞ
∂ϑ

� �
þ g9

∂KðϑÞ
∂ϑ

n� 1
n

ðπ þ g10Þ � 1=n
� �

∂
2g

∂T2
¼ R

T0
2g2 � 2g3

ϑ2 þ g42
� 2g5
ϑ2 þ g62

þ g7Δπ expðfαðϑÞÞ∂
2fαðϑÞ
∂ϑ2 þ expðfαðϑÞÞ ∂fαðϑÞ

∂ϑ

� �2

þ g8
∂
2KðϑÞ
∂ϑ2

" #
þ g9

∂
2KðϑÞ
∂ϑ2 ½ðπ þ g10Þðn � 1Þ=n � ð1 þ g10Þðn � 1Þ=n�

( )

∂
2g
∂p2

¼ RT0

p02
g9KðϑÞ1� n

n2
ðπ þ g10Þ � ðn þ 1Þ=n

� �

Table 4. Partial Derivatives of K and fα with Respect to Temperature and Pressure

equation for the derivatives of K and fα

∂KðϑÞ
∂ϑ

¼ 2gk0ϑ þ gk1

∂
2KðϑÞ
∂ϑ2 ¼ 2gk0

∂fαðϑÞ
∂ϑ

¼ 2gα0 ϑ þ gα1
2ϑ� gα2

ϑ2 � gα2 ϑ þ gα3
þ gα4

2ϑ þ gα2
ϑ2 þ gα2 ϑ þ gα3

þ gα5
gα7

1

1 þ ϑ� gα6
gα7

 !2 þ gα8
gα7

1

1 þ ϑ þ gα6
gα7

 !2

∂
2fαðϑÞ
∂ϑ2 ¼ 2gα0 þ gα1

2ðϑ2 � gα2 ϑ þ gα3 Þ � ð2ϑ� gα2 Þ2
ðϑ2 � gα2 ϑ þ gα3 Þ2

þ gα4
2ðϑ2 þ gα2 ϑ þ gα3 Þ � ð2ϑ þ gα2 Þ2

ðϑ2 þ gα2 ϑ þ gα3 Þ2

� gα5
ðgα7 Þ2

1

1 þ ϑ� gα6
gα7

 !2
0
@

1
A22

ϑ� gα6
gα7

� gα8
ðgα7 Þ2

1

1 þ ϑ þ gα6
gα7

 !2
0
@

1
A22

ϑ þ gα6
gα7
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sublimation pressure. Equation 2 was only fitted to the data of
Giauque and Egan,3 who state an experimental uncertainty of 0.2
% for temperatures between (35 and 195) K. As seen in Figure 1
the maximum deviation does not exceed 0.4 %. But the deviation
of some heat capacities calculated from eq 8 from the experi-
mental data of Giauque and Egan3 exceeds the experimental un-
certainty. Concerning the year the data were measured and tak-
ing a closer look at it, we think Giauque and Egan3 might have
underestimated their uncertainties slightly. Nevertheless, com-
pared to data of other authors, the data of Giauque and Egan3

are the most accurate for temperatures greater than 80 K.
Eucken and Hauck11 state an uncertainty of 1.5 %; the
other authors do not give information about their estimated
measurement uncertainties. Heat capacities for temperatures
lower than 80 K were not only measured by Giauque and
Egan3 but also by Eucken11 and Manzhelii et al.4 as displayed
in Figure 2.

In Figure 3 relative deviations of molar volume data from
calculated values are plotted over temperature. Again the corre-
sponding pressure is the sublimation pressure. Themost accurate
measurements are considered to be those ofManzhelii et al.4 The
deviations of calculated values from the experimental data by
Manzhelii et al.4 do not exceed 0.2 %. Deviations from experi-
mental data by Keesom and K€ohler14 and Maass and Barnes8 do
not exceed 0.4 %, respectively.

In Figure 4 thermal expansion coefficient data and calculated
values from eq 17 and in Figure 5 isothermal compressibility data
and values calculated from eq 18 are plotted over temperature.
Again the pressure corresponds to the sublimation pressure. In
setting up the equation, one of the assumptions we had to make
was that, at a constant temperature for 0MPa to ptr cp,α and k are
constant. To assess the impact of these assumptions we analyzed

relative deviations of these properties for temperatures between
80 K and Ttr and pressures between 0 MPa and ptr. The maxi-
mum deviation for the heat capacity was found at Ttr and is
(cp(Ttr, 0 MPa)� cp(Ttr, ptr))/cp(Ttr, ptr) = 0.02 %. The maximum

Table 5. Numerical Check Values

T = Ttr = 216.592 K T = 100 K

thermodynamic property p = ptr = 0.51795 MPa p = 100 MPa

g/(J 3mol�1) �1.447007522 3 10
3 �2.961795962 3 10

3

v/(m3
3mol�1) 2.848595255 3 10

�5 2.614596591 3 10
�5

s/(J 3mol�1
3K

�1) �1.803247012 3 10
1 �5.623154438 3 10

1

cp/(J 3mol�1
3K

�1) 5.913420271 3 10
1 3.911045710 3 10

1

α/(K�1) 8.127788321 3 10
�4 3.843376525 3 10

�4

k/(Pa�1) 2.813585169 3 10
�10 1.149061787 3 10

�10

Figure 1. Relative deviations 100Δcp/cp,calc = 100(cp,calc� cp,exp)/cp,calc
of heat capacity data from values calculated from eq 16. �,
Eucken;12 4, Eucken and Hauck;11 O, Giauque and Egan;3 ], Maass
and Barnes.8

Figure 2. Isobaric heat capacity: experimental data and values
calculated from eq 16. —, calculated; �, Eucken;12 4, Eucken and
Hauck;11 O, Giauque and Egan;3 ], Maass and Barnes;8 +, Manzhelii
et al.4

Figure 3. Relative deviations 100Δv/vcalc = 100(vcalc � vexp)/vcalc of
molar volume data from values calculated from eq 11. ], Maass and
Barnes;8 4, Manzhelii et al.;4 0, Keesom and K€ohler.14

Figure 4. Thermal expansion coefficient α: data and values calculated
from eq 17.—, calculated;0, Keesom and K€ohler;144, Manzhelii et al.4

Figure 5. Compressibility k: data and values calculated from eq 18.—,
calculated; 4, Manzhelii et al.4
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deviation for kwas found to be 0.165 % and forα 0.096 %. These
deviations are small compared to deviations from the measured
values available; the initial assumptions are justified.
Range of Validity and Extrapolation Behavior. To use the

dry ice equation for phase equilibrium calculations eq 8 has to
cover a wide range of pressures and temperatures, for which no
experimental data are available. Thus, it has to be proven that eq 8
behaves qualitatively correctly within a sufficiently large range of
validity. For demonstration purposes isobars and isotherms for
some thermodynamic properties are plotted over temperature in
Figure 6. Equation 8 shows reasonable physical behavior up to

pressures of about 500 MPa. The lower temperature limit has
been set to 80 K since for very low temperatures physically in-
correct solutions may occur. Thus the range of validity for eq 8
has been set to 0 MPa < p < 500MPa and 80 K < T < 300 K. The
upper temperature limit corresponds to a melting pressure of
about 500 MPa.
For some thermal properties experimental data are available

outside the range of validity; extrapolation of these properties yields
good results. The high-pressure molar volume data of Olinger5

and Liu6 are reproduced with a maximum deviation of about
2 % (Figure 7) and the deviation from experimental data for

Figure 6. Isobars and isotherms for some properties calculated from eq 8 and its derivatives.

Figure 7. Relative deviations 100Δv/vcalc = 100(vcalc � vexp)/vcalc of
molar volume data from calculated values from eq 11. 0, Liu;6 ],
Olinger.5

Figure 8. Deviations Δcp = cp,calc � cp,exp of low temperature heat
capacity data from values calculated from eq 16. �, Eucken;12 O,
Giauque and Egan;3 +, Manzhelii et al.4
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extrapolation of cp to temperatures lower than 80 K does not
exceed 0.4 J 3mol

�1
3K

�1 as shown in Figure 8. The thermal
expansion coefficient and the isothermal compressibility may be
extrapolated to lower temperatures too (for pressures up to the
triple point pressure) as seen before in Figures 4 and 5. It can be
seen from Figure 3 that extrapolation to temperatures lower than
80 K for the molar volume at pressures up to the triple point
pressure also gives good results.
Sublimation Pressure. Sublimation pressures of CO2 have

been measured by Bedford et al.,15 Bilkadi et al.,16 Bryson et al.,17

Ambrose,18 Giauque and Egan,3 and Fernandez-Fassnacht and
del Rio.19 Span andWagner10 established an accurate correlation
equation for the sublimation pressure, based on selected experi-
mental data. They state that the uncertainty of their equation is
Δpsub e ( 250 Pa for 185 K e T e Ttr, Δpsub e ( 100 Pa for
170 K e T e 185 K, and Δpsub e ( 50 Pa for T e 170 K.
Equation 8 allows for equilibrium pressure calculations by find-
ing pressures p and temperatures T, which satisfy the phase equi-
librium condition for pure substances:

μsolðT, pÞ ¼ μvapðT, pÞ S gsolðT, pÞ ¼ gvapðT, pÞ ð23Þ
Since eq 23 cannot be solved analytically, we have to find a
solution numerically setting the break condition to�����gsolðT, pÞ � gvapðT, pÞ

����� < 0:000001 J 3mol�1 ð24Þ

In Figure 9 deviations of the correlation equation from experi-
mental values and values calculated using eq 8 for the solid phase
and the reference equation for carbon dioxide by Span and
Wagner10 for the gas phase are presented. Additionally the uncer-
tainties of the correlation equation given by Span and Wagner10

are shown.
Ideally, the calculated sublimation pressures, which are in-

dicated by the solid line, should stay within the uncertainty of the
correlation equation. The results do not quite meet this require-
ment, and some calculated values deviate slightly more than the
uncertainty of the correlation equation. We studied this effect by
using another equation of state for the gas phase. Employing the
also highly accurate equation by Ely et al.20 required some modi-
fication of eq 8 regarding the constants g0 and g1 since both the
entropy of the liquid at the triple point (see eq 20) and the Gibbs
free energy of the vapor and liquid phases at the triple point (see
eq 19) change. After recalculation of the constants the phase
equilibrium condition remains the same. The results obtained by
using the equation of state by Ely et al.20 instead of the equation
by Span and Wagner10 are shown in Figure 10.
The calculated sublimation pressures depend significantly on

the equation used for the fluid phase. Furthermore small differe-
nces in the Gibbs energy for either the fluid or the solid phase
lead to significant changes in calculated sublimation pressures.
Considering this, better results for sublimation pressure calcula-
tion could only be achieved by either fitting the equation for the
solid or fitting the equation for the fluid phase to the sublimation

Figure 9. Deviations Δpsub = psub,corr.eq � psub,calc(exp) of sublimation
pressures calculated from the phase equilibrium condition from values
calculated from the correlation equation by Span and Wagner.10 The
fundamental equation by Span andWagner10 was used for the gas phase.
—, calculated; ��, uncertainty; 0, Ambrose;18 4, Bedford et al.;15 ],
Bilkadi et al.;16O, Bryson et al.;17 +, Fernandez-Fassnacht and del Rio;19

/, Giauque and Egan.3

Figure 10. Deviations Δpsub = psub,corr.eq � psub,calc(exp) of sublimation
pressures calculated from the phase equilibrium condition from values
calculated from the correlation equation by Span andWagner.10 The funda-
mental equation by Ely et al.20 was used for the gas phase. —, calculated;
� �, uncertainty;0, Ambrose;18 4, Bedford et al.;15], Bilkadi et al.;16O,
Bryson et al.;17 +, Fernandez-Fassnacht and del Rio;19 /, Giauque andEgan.3

Figure 11. Relative deviations 100Δpmelt/pmelt,corr.eq = 100(pmelt,corr.eq�
pmelt,calc(exp))/pmelt,corr.eq of melting pressures calculated from the phase
equilibrium condition from values calculated from the correlation
equation by Span and Wagner.10 The fundamental equation by Span
and Wagner10 was used for the fluid phase. —, calculated; � �, un-
certainty; ], Clusius et al.;22 0, Michels et al.21

Figure 12. Relative deviations 100Δpmelt/pmelt,corr.eq = 100(pmelt,corr.eq.

� pmelt,calc(exp))/pmelt,corr.eq of melting pressures calculated from the
phase equilibrium condition from values calculated from the correlation
equation by Span and Wagner.10 The fundamental equation by Ely
et al.20 was used for the fluid phase.—, calculated;��, uncertainty;],
Clusius et al.;22 0, Michels et al.21
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pressure data. So far phase equilibrium calculations are predictive
—neither of the two equations of state was fitted to sublimation
pressures.
Melting Pressure. Melting pressures of CO2 have been

measured byMichels et al.21 andClusius et al.22 Span andWagner10

also established an accurate correlation equation for the melting
pressure of CO2. They estimated the uncertainty of this equation
to be Δpmelt/pmelt e ( 1.5 % for Ttr e T e 225 K and Δpmelt/
pmelt e( 0.5 % for 225 Ke Te 270 K. The phase equilibrium
condition for the solid and the liquid phase remains the same as
for the sublimation equilibrium. So eq 23 may be rewritten:

μsolðT, pÞ ¼ μliqðT, pÞ S gsolðT, pÞ ¼ gliqðT, pÞ ð25Þ
Again, the phase equilibrium condition has to be solved itera-
tively. The relative deviations of the correlation equation from
experimental data as well as from themelting pressures calculated
using eq 8 and the reference equation for carbon dioxide by Span
and Wagner10 are presented in Figure 11. The deviations of the
calculated pressures from the correlation equation from the
pressures calculated using eq 8 stay within the uncertainty stated
by Span and Wagner10 throughout the whole temperature range
for which the correlation equation is valid. For comparison, the
equation of state for the fluid phase by Ely et al.20 was used to
calculate equilibrium pressures in Figure 12. The melting pres-
sures calculated this way deviate significantly from the correlation
equation, but this result was to be expected since the Helmholtz
equation by Ely et al.20 is valid only for pressures up to 100 MPa
(the corresponding melting temperature is about 236 K). Never-
theless it can be stated that calculated melting pressures are
rather sensitive to the representation of Gibbs energies in the
liquid phase.

Equilibrium Pressures for Mixtures. Additionally we studied
the effect of small impurities (N2) in the CO2 on the equilibrium
pressures. Therefore we chose three different mixtures (ψCO2

=
0.95, ψN2

= 0.05; ψCO2
= 0.99, ψN2

= 0.01; ψCO2
= 0.999, ψN2

=
0.001) and calculated the sublimation pressure according to

μsolðT, pÞ ¼ μvapCO2
ðT, p,ψÞ S gsolðT, pÞ ¼ μvapCO2

ðT, p,ψÞ
ð26Þ

This simple equilibrium condition is valid if the solid phase
consists only of CO2 (dry ice). The melting pressure was calcu-
lated according to

μsolðT, pÞ ¼ μliqCO2
ðT, p,ψÞ S gsolðT, pÞ ¼ μliqCO2

ðT, p,ψÞ
ð27Þ

The equations usedwere again the reference equation for CO2 by
Span and Wagner10 and for N2 the reference equation by Span
et al.23 was used. Themixing rule was taken from theGERG 2004
equation of state for natural gases by Kunz et al.24 The solid phase
is assumed to be pure dry ice. These pressures are compared to
the ideally calculated equilibrium pressures according to eqs 28
and 29.

psubðT,ψÞ ¼
psubpure CO2

ðTÞ
ψCO2

ð28Þ

pmeltðT,ψÞ ¼
pmeltpure CO2

ðTÞ
ψCO2

ð29Þ

The relative deviations of the calculated pressures using the
new equation for dry ice and the ideal pressures are shown in
Figures 13 and 14.
The deviations of the ideally calculated sublimation pressures

from calculated values (Figure 13) increase as the temperature
increases and with increasing N2 concentration. This is some-
what expected since with the increase of temperature (and by
that the increase of the sublimation pressure) and with increasing
N2 concentration the assumption of an ideal mixture gets worse.
The relative deviations for the melting pressure (Figure 14) also
increase with the amount of N2 in the mixture but decrease with
increasing temperature. In the liquid phase the deviations of the
ideally calculated melting pressures from the calculated ones are
much higher than those in the gas phase. The reasons are that the
ideal mixture model does not work well for liquids and that the
N2 concentration has a large contribution to g of the mixture.

’CONCLUSIONS AND PERSPECTIVE

A new equation of state for solid carbon dioxide based on the
Gibbs free energy has been developed; the range of validity was
set to 0 MPa < p < 500 MPa and 80 K < T < 300 K. Most of the
available thermodynamic property data are represented within
the uncertainty of the experimental data. For temperatures and
pressures within the range of validity eq 8 ensures physically
correct behavior. In combination with a fundamental equation
for the fluid phase of carbon dioxide, the equation for the solid
allows for accurate calculation of phase equilibrium pressures.
Therefore this equation might be used for more complex phase
equilibrium calculation, for example, flash calculations or phase
equilibria including mixtures as demonstrated in this work. Further
improvement of this equation may require another structure of the

Figure 13. Relative deviations 100Δpsub/psub = 100(psub � psub,ideal)/
psub in sublimation pressures for three differentmixtures of CO2withN2.
The deviation of calculated sublimation pressures according to eq 26
from pressures calculated from eq 28 is plotted over temperature.

Figure 14. Relative deviations 100Δpmelt/pmelt = 100(pmelt � pmelt,

ideal)/pmelt in melting pressures for three different mixtures of CO2 with
N2. The deviation of calculated melting pressures according to eq 27
from pressures calculated from eq 29 is plotted over temperature.
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equation and another fitting procedure, where the equilibrium data
is also taken into account. Therefore the next stepwould be to think
about a general form for the Gibbs free energy of solids and fit this
equation and its derivatives to the experimental data, like it is done
for fundamental equations of state for the fluid phase.
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